Preliminary communication

A new class of monosaccharide derivatives: O-phthalimidohexoses

EDWARD GROCHOWSKI and JANUSZ JURCZAK

Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warszawa (Poland) (Received June 28th, 1976; accepted for publication, July 2nd, 1976)

We recently reported that the use of N-hydroxyphthalimide as a nucleophilic reagent in reactions with alcohols in the presence of triphenylphosphine and diethyl azodicarboxylate leads to O-alkyl derivatives of hydroxylamine¹. We now report on the application of this reaction to carbohydrate derivatives containing an "isolated" hydroxyl group to afford a new type of monosaccharide derivative, namely O-amino sugars.

Treatment of 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose² with equimolar amounts of N-hydroxyphthalimide, triphenylphosphine, and diethyl azodicarboxylate in tetrahydrofuran at room temperature for 24 h, followed by concentration, and chromatography of the residue on a silica gel column with benzene—ether (9:1), gave 1,2:3,4-di-O-isopropylidene-6-O-phthalimido-α-D-galactopyranose (1, 54.3%), m.p. 121–122°; ν KBr 1615, 1740 and 1795 (C=O), and 700 cm⁻¹ (aromatic); no OH absorption. The p.m.r. spectrum (chloroform-d) was similar to that for 6-deoxy-1,2:3,4-

di-O-isopropylidene-6-phthalimido- α -D-galactopyranose³ except for the chemical shift of H-6,6'. Similarly, ethyl 2,3-dideoxy- α -D-erythro-hex-2-enopyranoside⁴ with 2 moles of each reagent for 1 mole of sugar gave ethyl 2,3-dideoxy-4,6-di-O-phthalimido- α -D-threo-hex-2-enopyranoside (2, 78.5%), m.p. 250–252°, $\nu_{\text{max}}^{\text{KBr}}$ 1615, 1740 and 1790 (C=O), and 695 cm⁻¹ (aromatic). The p.m.r. spectrum (pyridine- d_5) was similar to that for ethyl 2,3,4,6-tetradeoxy-4,6-diphthalimido- α -D-threo-hex-2-enopyranoside³; the coupling constants for H-4 ($J_{3,4}$ 5.0, $J_{4,5}$ 3.5 Hz) showed that inversion of configuration at C-4 had occurred in this reaction.

2,3:5,6-Di-O-isopropylidene-D-mannofuranose⁵ was converted into two products that were isolated by chromatography on silica gel. The first was N-(2,3:5,6-di-O-isopropylidene- α -D-mannofuranosyloxy)phthalimide (3, 11.0%), m.p. 128–129°; $\nu_{\rm max}^{\rm KBr}$ 1610, 1740 and 1795 (C=O), and 695 cm⁻¹ (aromatic). The p.m.r. spectrum (chloroform-d) was similar to that recorded for N-(2,3:5,6-di-O-isopropylidene- α -D-mannofuranosyl)phthalimide⁶. The α -configuration of this compound was established on the basis of the coupling constant $J_{1,2} \sim 0$ Hz. The second product was N-(2,3:5,6-di-O-isopropylidene- β -D-mannofuranosyloxy)phthalimide (4, 65.0%), m.p. 146–147°; $\nu_{\rm max}^{\rm KBr}$ 1615, 1740 and 1795 (C=O), and 700 cm⁻¹ (aromatic). The β -configuration followed from the coupling constant $J_{1,2}$ 4.0 Hz.

The new compounds described here had correct elemental analyses, and apparently constitute the first examples of carbohydrate O-derivatives of hydroxylamine.

ACKNOWLEDGMENT

The authors thank Professor A. Zamojski for his kind interest in this research.

REFERENCES

- 1 E. Grochowski and J. Jurczak, Synthesis, in press.
- 2 R. S. Tipson, Methods Carbohyd. Chem., 2 (1963) 247.
- 3 W.A. Szarek, C. Depew, A. Zamojski, and J. Jurczak, unpublished data.
- 4 R. J. Ferrier and N. Prasad, J. Chem. Soc. C. (1969) 570-575.
- 5 O. T. Schmidt, Methods Carbohyd. Chem., 2 (1963) 319.
- 6 J. Jurczak, G. Grynkiewicz, and A. Zamojski, Carbohyd. Res., 39 (1975) 147-150.